

NONOILEN® TF 3300-1

TECHNICAL DATASHEET

Last actualisation: 9/2022

Basic description

NONOILEN® is thermoplastic material based on biodegradable polymer blends made of renewable raw materials. NONOILEN®, produced by PANARA a.s., undergoes biodegradation under various natural conditions (e.g. at home compost, industrial compost, soil, seawater) according to material composition.

Application segment

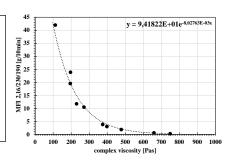
NONOILEN® TF 3300-1 is optimised for sheet extrusion for thermoforming and vacuum forming technology.

Physical form

Cylindrical pellets

Composition

Major components	PLA, PHB polymers
Minor components	Biodegradable plasticiser(s) and other additives


Material properties (typical values, do not perform a specification of given grade)

Parameter	Test method	Unit	Value					
Rheological properties								
Complex viscosity	160°C	Internal method	Pas	1559				
(measured using oscillating rheometer)	180°C	Internal method	PdS	957				
Shrinkage			%	N/A				
Mechanical properties								
Density at 23°C	ISO 1183	g/cm ³	1,35					
Tensile strength	- ISO 527	MPa	55					
Tensile strength at break		MPa	N/A					
Elongation at break		%	1,3					
Young modulus		GPa	6,4					
Charpy impact strength un-notched	23°C	ISO 179	kJ/m²	15				
Charpy impact strength un-notched	-30°C	130 179	kJ/m²	13				
Hardness	ISO 868	Shore D	N/A					
Flexural strength	ISO178	MPa	80					
Flexural deformation		%	37					
Flexural modulus		GPa	5,7					

MFI is not relevant parameter for Nonoilen materials because measurement system for MFI does not allow to determine true flow properties of Nonoilen blend. The best testing method is represented by oscillating rheometry which give values of complex viscosity. For better understanding relation between complex viscosity and commonly using MFI parameter, correlation curve between both parameters is in Figure on right side. MFI values represent there MFI of LDPE at 190°C or PP at 230°C under 2.16 kg loading. Viscosity was measured at low shear rates (15/s), so at real high shear rate during injection, Nonoilen will flow much easily.

Parameter	Test method	Unit	Value					
Thermal properties								
Glass transition temperature	DSC	°C	57					
Melting point Tm1	DSC	°C	172					
Melting point Tm2	DSC	°C	N/A					
Crystallisation temperature	DSC	°C	108					
Heat deflection temperature	ISO 75, B	°C	112					
Vicat softening point VST	ISO 306, A/50	°C	76,7					
Barrier properties								
Permeation of N ₂			N/A					
Permeation of O ₂ (OTR)	23°C, 50%RH, 0,21bar	internal	cm ³ /(m ² .day)	N/A				
Permeation of CO ₂			N/A					
Permeation of H ₂ O vapour	23°C, 50%RH	internal	mg(m ² .day)	N/A				
Biodegradation								
Degree of disintegration after 90 days	58°C (thermophilic)	ISO 20200	%	*				
incubation	25°C (mesophilic)		%	*				
Time to 100% disintegration	58°C (thermophilic)		days	*				
	25°C (mesophilic)		days	*				
Total microbial decomposition	N/A							

^{*} Under certification process

Storage and handling

NONOILEN® is delivered in 20kg barrier bags. The original package should be stored at humidity up to 60% and temperature in range 10-30°C. Pellets are pre-dried. Before processing, drying for 1 hour at 70°C is recommended. The moisture content should be below 1000 ppm (0,1%).

Processing conditions

Melt temperature should not exceed 200°C, optimally it should range from 160 to 180°C on the die. Nonoilen TF 3300-1 is suitable for cast film (sheet) extrusion in thickens up to 1 mm – semi-product for thermoforming. Thermoforming process parameters have to be adjusted according to specifics of production line and product shape.

Special additives

Colour masterbatches and other additive masterbatches can be used for processing as well as other properties modification. The Clariant masterbatches for NONOILEN® are recommended.